Gap junction remodelling in human heart failure is associated with increased interaction of connexin43 with ZO-1
نویسندگان
چکیده
AIMS Remodelling of gap junctions, involving reduction of total gap junction quantity and down-regulation of connexin43 (Cx43), contributes to the arrhythmic substrate in congestive heart failure. However, little is known of the underlying mechanisms. Recent studies from in vitro systems suggest that the connexin-interacting protein zonula occludens-1 (ZO-1) is a potential mediator of gap junction remodelling. We therefore examined the hypothesis that ZO-1 contributes to reduced expression of Cx43 gap junctions in congestive heart failure. METHODS AND RESULTS Left ventricular myocardium from healthy control human hearts (n = 5) was compared with that of explanted hearts from transplant patients with end-stage congestive heart failure due to idiopathic dilated cardiomyopathy (DCM; n = 5) or ischaemic cardiomyopathy (ICM; n = 5). Immunoconfocal and immunoelectron microscopy showed that ZO-1 is specifically localized to the intercalated disc of cardiomyocytes in control and failing ventricles. ZO-1 protein levels were significantly increased in both DCM and ICM (P = 0.0025), showing a significant, negative correlation to Cx43 levels (P = 0.0029). There was, however, no significant alteration of ZO-1 mRNA (P = 0.537). Double immunolabelling demonstrated that a proportion of ZO-1 label is co-localized with Cx43, and that co-localization of Cx43 with ZO-1 is significantly increased in the failing ventricle (P = 0.003). Interaction between the two proteins was confirmed by co-immunoprecipitation. The proportion of Cx43 that co-immunoprecipitates with ZO-1 was significantly increased in the failing heart. CONCLUSION Our findings suggest that ZO-1, by interacting with Cx43, plays a role in the down-regulation and decreased size of Cx43 gap junctions in congestive heart failure.
منابع مشابه
Zonula occludens-1 and connexin 43 expression in the failing human heart
Focal disorganization of gap junctional distribution and down-regulation of the major gap junctional protein connexin 43 are typical features of myocardial remodelling in the failing human heart. Increasing evidence indicates that connexin 43 interacts with zonula-occludens-1 (ZO-1), and it has recently been shown that ZO-1 promotes the formation and growth of gap junctional plaques. In the pre...
متن کاملZO-1 Alters Connexin43 Gap Junction Size and Organization by Influencing Channel Accretion
Regulation of gap junction (GJ) organization is critical for proper function of excitable tissues such as heart and brain, yet mechanisms that govern the dynamic patterning of GJs remain poorly defined. Here, we show that zonula occludens (ZO)-1 localizes preferentially to the periphery of connexin43 (Cx43) GJ plaques. Blockade of the PDZ-mediated interaction between ZO-1 and Cx43, by genetic t...
متن کاملIncreased association of ZO-1 with connexin43 during remodeling of cardiac gap junctions.
The intercellular geometry of connexin43 (Cx43) gap junctional coupling is key to coordinated spread of electrical activation through the ventricle of the mammalian heart. A progressive redistribution of electrical and mechanical junctions into intercalated discs occurs during postnatal development. Breakdown of disc-localized pattern in the adult heart, to recapitulate immature distributions, ...
متن کاملDetailed Regulatory Mechanism of the Interaction between ZO-1 PDZ2 and Connexin43 Revealed by MD Simulations
The gap junction protein connexin43 (Cx43) binds to the second PDZ domain of Zonula occludens-1 (ZO-1) through its C-terminal tail, mediating the regulation of gap junction plaque size and dynamics. Biochemical study demonstrated that the very C-terminal 12 residues of Cx43 are necessary and sufficient for ZO-1 PDZ2 binding and phosphorylation at residues Ser (-9) and Ser (-10) of the peptide c...
متن کاملConnexin45 interacts with zonula occludens-1 and connexin43 in osteoblastic cells.
The relative expression of connexin43 and connexin45 modulates gap junctional communication and production of bone matrix proteins in osteoblastic cells. It is likely that changes in gap junction permeability are determined by the interaction between these two proteins. Cx43 interacts with ZO-1, which may be involved in trafficking of Cx43 or facilitating interactions between Cx43 and other pro...
متن کامل